Supratik Guha

Professor

Group website

Contact

  • Phone
    773.834.4209
  • Address

    Eckhardt Research Center

    Room 213

    5640 South Ellis Avenue

    Chicago, IL 60637

     

    ANL, Bldg. 440

  • Email
    guha@uchicago.edu
  • Assistants
    Alena Kananenka, Laurie Eichberger

Research

The Guha Lab’s research focuses on new materials and systems for information processing and sensing.  Current projects are in the following areas:

1) New oxide based materials and devices for neuromorphic architectures and non-volatile memory: This work encompasses low energy, non volatile devices for synapses and neurons that may be used in neuromorphic architectures, and devices for non-volatile memory and selector switch applications. (Collaborators: Prof. Suman Datta, Notre Dame; Dr. S. Sankaranarayanan, Argonne).

2) Epitaxial rare earth oxide based solid state qubits on silicon platforms for quantum information science:  This research examines molecular beam epitaxially growth rare earth oxide heterostructures on silicon that are doped aliovalently for solid state qubit applications.  Advantages of such systems are compatibility with silicon microelectronics and silicon photonics technologies, enabling direct on-chip coupling to photons, and the electronic modulation of the qubits. (Collaborators: Prof. Tien Zhong, U Chicago; Prof. D. Awschalom, U Chicago; Dr. Tijana Rajh, Argonne). 

3) Cyberphysical Sensor Networks and Sensor Technologies for Water and Soil: There is enormous need for monitoring and mapping soil and water quality at high spatial and temporal resolution—it has consequences for soil and plant science, and impact on globally relevant issues such as environmental management, food security, and human health.  The geochemical and microbial cycling of soils for example are not well understood and there is need for better data in order to develop more accurate models of soil.  Similarily, river and lake pollution, the prediction of pollution spread, compliance enforcement, and the effect of water quality on human health and socio-economic conditions can be much better understood with better data.  Our research constitutes of two parts: (i) the development of fully buried wireless underground cyberphysical sensor networks for soil monitoring and the development of mobile sensing platform based sensor networks for river and lake monitoring; and (ii), the development of better sensors using silicon photonics platforms and functionalization chemistry for difficult to measure parameters such as e. coli, total colliform and heavy metals in water, and dissolved nitrates in soil. (Collaborators: Dr. M. Ghosh, U Chicago; Prof. A. Malani, U. Chicago; Dr. S. Chary, Administrative Staff College of India, Prof. S. Sarkar, Ambedkar U, India; Prof. T. Dutta, IIT-BHU, India; Prof. A. Gupta, IIEST Shibpur, India; Dr. P. Jamiwal, ATREE, India; Dr. X. Zhang and Dr. B. Dirroll from Argonne, Dr. S. Randhawa, IBM Research; SigFox).

4) Creating single crystal films and three dimensional structures on arbitrary substrates: Commercial silicon technologies, such those used for fabricating microprocessor chips for computing and mobile telephones, or for solar cells, rely upon the high quality single crystal silicon layers on an expensive silicon wafer.  If one could build high quality silicon layers on cheap substrates such as glasss, and without the need for an expensive silicon wafer, it would alter the way we do microelectronics and solar cell manufacturing.  This project explores ways of using imprint crystallization and near field epitaxy to create such layers.  (Collaborators: Dr. S. Sankaranarayanan, Dr. Saw Hla & Dr. N. Guisinger, all from Argonne).

In the past, Supratik pioneered the materials research that led to IBM’s high-k dielectric metal gate transistor technology, one of the most significant developments in silicon CMOS technology in decades.  The processor chips in over fifty percent of smart phones and tablets sold today use nanoscale dielectrics and processes developed by Supratik.  He has also worked extensively on earth abundant thin film photovoltaics, and his research group has been responsible for demonstrating the highest efficiency vacuum deposited Cu2ZnSn(S,Se)4 solar cells, and the first tandem chalcogenide/perovskite solar cells to date.  As a manager at IBM he has had significant experience developing inter-company joint R&D alliances and has initiated or expanded several successful programs such as silicon photonics, quantum computing, carbon electronics, photovoltaics, and sensor based analytics.

Biography

Supratik Guha is the Director of the Nanoscience and Technology Division and the Center for Nanoscale Materials at the Argonne National Laboratory, and a Professor at the Institute for Molecular Engineering, The University of Chicago. He is also the Senior Scientific Advisor to the Director at Argonne.

Dr. Guha came to The University of Chicago and Argonne in 2015 after spending twenty years at IBM Research where he last served as the Director of Physical Sciences. At IBM, Dr. Guha pioneered the materials research that led to IBM’s high dielectric constant metal gate transistor, one of the most significant developments in silicon microelectronics technology.  He was also responsible for initiating or significantly expanding IBM’s R&D programs in silicon photonics, quantum computing, sensor based cyberphysical systems and photovoltaics.

Dr. Guha is a member of the National Academy of Engineering and a Fellow of the Materials Research Society, American Physical Society, a 2018 Department of Defense Vannevar Bush Faculty Fellow, and the recipient of the 2015 Prize for Industrial Applications of Physics.  He received his Ph.D. in materials science in 1991 from the University of Southern California, and a B.Tech in 1985 from the Indian Institute of Technology, Kharagpur.  At The University of Chicago and Argonne, his interests are focused on discovery science in the area of nano-scale materials and epitaxy for energy, sensing and future information processing.

Socialize With Us